Chemistry worksheet on reaction rates

- 1) Examine the following two statements and decide whether to classify it as a thermodynamic or kinetic statement
- a. Sometimes molecules don't react because the reaction is unfavourable, and the products are higher in energy than reactants Thermodynamics "favource bility *
- b. Sometimes molecules don't react because there's an energy barrier that prevents it kinetics
- 2) Determine which of the following would make a reaction proceed more quickly
- Decreasing the surface area of a solid \(\int \)
- b. Decreasing the concentration of reactants F
- c. Increasing the concentration of reactants T
- d. Decreasing the temperature I
- 1. Reaction rate refers to how quickly or slowly the reach disappear and the product
- 2. Change in concentration for products of a reaction are ___(+) and __(-) for reagents
- Increasing the temperature of a reaction _____ the rate
- 4. Rates must be (+) and proportional to stoichiometry.
- 4) Consider the following reaction

 $Zn_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + ZnCl_{2(aq)}$

A piece of zinc is dropped into 1.00 L of 0.100M of HCl and the following data was obtained

Time (s)	Mass of zinc (g)		
0	0.016		
4	0.014		
8	0.012		
12	0.010		
16	0.008		
20	0.006		

a) Calculate the rate of reaction in grams of Zn consumed per second

a) Calculate the rate of reaction in grams of 211 consumed per second

Take:
$$\Delta mass = 0.016 - 0.0069 = 0.0109 = 5 \times 10^{-4}$$

A time $20-0$ $20s$

b) Calculate the rate of reaction of moles of Zn consumed per second

c) What will happen to the concentration of [H⁺] as the reaction proceeds?

decrease

d) What happens to the concentration of [Cl-] as the reaction proceeds

No change (spectator)

e) What happens to the concentration of [ZnCl₂] as the reaction proceeds

Increases

5) Consider the following reaction

 $2NaOCl_{2(aq)} \rightarrow 2NaCl_{(aq)} + O_{2(g)}$

Consider the relative graph below

a. Which line corresponds to the concentration of O_2 ?

Green

b. What line corresponds to NaCl?

black

c. What line corresponds to NaOCl₂?

Red

d. Write the rate of this reaction in the following form

RATE =
$$-\frac{1}{2}\frac{\Delta(A)}{\Delta t} = -\frac{1}{b}\frac{\Delta(B)}{\Delta t} = +\frac{1}{2}\frac{\Delta(G)}{\Delta t} = +\frac{1}{b}\frac{\Delta(H)}{\Delta t}$$

$$= -\frac{1}{2} \frac{d \left[Nacl_2 \right]}{dt} = \frac{1}{2} \frac{d \left[Nacl_3 \right]}{dt} = \frac{d \left[O2 \right]}{dt}$$
e. If over the first 20 minutes the change in concentration for O_2 is 0.32M what is the rate?

Parte =
$$\frac{0.32M}{1200-05}$$
 = $2.6 \times 10^{-4} M S^{-1}$

6) A reaction $A \rightarrow B$ with the rate equation rate = $k[A]^{I}$ has a rate of 100 M/hr when [A] = 6M what is the overall order of the reaction and what is the value of k?

7) Make two examples of a rate equation with an overall order of reaction = 2

8) Determine the orders of the following reactions

a. Rate =
$$k [A]^2 [B]^2$$

c. Rate =
$$k [A]^3$$
 3

9) Consider the data below and given the equation

 $A + B \rightarrow C$

Rate = $k [A]^m [B]^n$

Exp	[A]/M	[B]/M	Initial rate Ms ⁻¹
1	0.6	0.3	2.6 x 10 ⁻⁴
2	0.6	0.9	7.8 x 10 ⁻⁴
3	1.2	0.3	20.8 x 10 ⁻⁴

a. Given the data above what are the orders of A, B and the overall order of the reaction? $A = 2 \cdot 8 \cdot 2^n = 8 \cdot 2^3 = 8 \cdot A = 3$

$$A = 9.82^{n} = 8^{1}2^{3} = 8 A = 3$$

b. What happens to the rate when B is doubled?