Match the following definitions with the following terms:

10) When the temperature decreases q is (-)11) When the temperature ______ q is positive

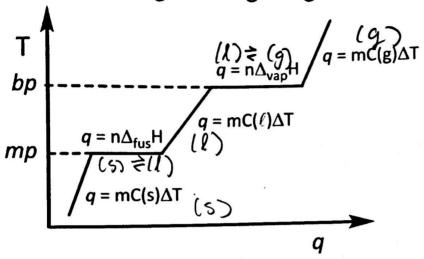
12) q depends on the waterial

r 1				V
1. System		\		Has a negative delta H value
2. Surrounds		1		Chemical bonds and intermolecular
	/	1		forces
Internal energy	sy /	1	V	Is the total internal heat of a
	_ /			system
4. Kinetic		N		Has a positive delta H value
5. Potential				The small part of the universe
	1 /	X X	\	$oldsymbol{arphi}$ undergoing the chemical or
		\ / \		physical charge were looking at
6. Endothermic		X	\ \	Energy transferred by changes in
				temperature
7. Heat		TX		Total kinetic and potential energy
			Λ	of a system
8. Work				Heat flow is always from hotter to
		\setminus	. X	colder material with equilibrium
			\	when temperatures are equal
9. Spontaneous			7	A property that depends only on
				the amount of material and
	- 0,	/	X	conditions (the state of the system
10. Forhably End	themic			Everything else
11. State function	1			Particle motion/vibration
12. Path function	" "		1	Energy transferred by anything else
	1	_		(usually pushing things)
13. Exothermic			1	Path function a property that
				depends on the process by which a
		,-)	}	
				state was achieved (q and w)

1) If a system absorbs heat from the surroundings q out of the system is(+)	
2) If a system releases heat to surroundings q out of the system is	
3) Spontaneous heat flow is always from hotter to colder material until _ when	
temperatures are equal	
4) If a system is at so no further heat is flowing, the two things must have the same Temperate	אנ
5) Do state functions depend on anything other then the initial and final states?	
6) At a constant pressure $\Delta H = q$	
7) For an endothermic reaction the q of the system is $(+)$ and the q of the surroundings is $(-)$	
8) Melting ice alsorbsheat, q is (+), and endothermic	
9) Temperature measures the average VE of molecules	

13) 20 kJ of heat is transferred to each of 2 kg gold (worth \$2000) and 2 kg of aluminum (worth \$2.60) both initially had a temperature of 30*C which metal has a hotter final temperature C(Au) = 0.13 J/g*C, C(AI) = 0.90 J/g*C?

14) The heat capacity of gold is $C(Au) = 0.13 \text{ J/g} \cdot C$; 2 kg of gold was placed in a reaction flask initially at 20 °C and once the reaction came to completion it had a temperature of 45 °C. Calculate q


$$C = 0.135 \text{ s} C$$
 $M = 2kg \frac{1000g}{1kg} = 2000g$ $T_1 = 2eC$

15) A 15.0 g piece of cadmium metal absorbs 134 J of heat while rising from 24*C to 62*C calculate the specific heat of cadmium. M = 15.09 $T_i = 24'C$

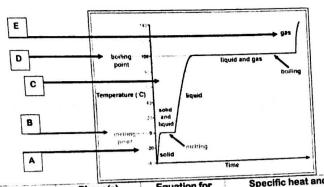
16) Calculate the specific heat capacity of a new alloy if a 15.4 g sample absorbs 393 J when it is heated from 0.0/C to 37.6/C.

$$m = 15.49$$
 $q = 3935$
 $T_1 = 0\% T_F = 37.6 \%$
 $q = mc \Delta T$
 $3935 = 15.49 \% (37.6\% - 0\%)$
 $C = 3935$
 $15.99\%37.6\%$

H and T/phase changes: heating/cooling diagram

a) Show the phases at each stage on the diagram

b) Define enthalpy of fusion
enthalpy væded to melt om mole of a substance at its
melting punt


c) Define enthalpy of vaporization

enthalpy needed to reparte one much of a substene at its boiling point.

d) In general as intermolecular forces become stronger, enthalpy of vaporization <u>hereal</u> because it measures the energy required to <u>ovorton</u> those forces

overione

18) Consider the following heating/cooling diagram

			Specific heat and
Point on Graph	Phase(s)	Equation for heat (q)	enthalpy values (water) 2.11 J/g*C
A	Solid	m x C _p x Δ T	
B	Solid & Liquid	m x H _{fue}	335.5 J/g
		m x C _p x ΔT	4.18 J/g*C
С	Liquid		2260 J/g 2.00 J/g*C
D	Liquid & Gas	m x H _{vep}	
E	Gas	m x C _p x Δ T	

y start (9)

a. How much heat is released when 111 g of water vapor is cooled from 110*C to water at 100*C

19)Calculate the enthalpy for this reaction:

$$2C(s) + H_2(g) ---> C_2H_2(g) \Delta H^\circ = ??? kJ$$

Given the following thermochemical equations:

$$C_2H_2(g) + \frac{5}{2}O_2(g) - --> 2CO_2(g) + H_2O(\ell) \Delta H^\circ = -1299.5 \text{ kJ}$$

(1)
$$C(s) + O_2(g) ---> CO_2(g)$$

$$\Delta H^{\circ} = -393.5 \text{ kJ}$$

$$H_2(g) + \frac{1}{2}O_2(g) ---> H_2O(\ell)$$

$$\Delta H^{\circ} = -285.8 \text{ kJ}$$

w changes

AHTOTAL = (1299,5K3) + (-787K3) + (-285 8K3)

20)Calculate the enthalpy of the following chemical reaction:

$$CS_2(\ell) + 3O_2(g) ---> CO_2(g) + 2SO_2(g)$$

Given:

$$C(s) + O_2(g) ---> CO_2(g) \Delta H = -393.5 \text{ kJ/mol} \rightarrow don + \Delta$$

 $S(s) + O_2(g) ---> SO_2(g) \Delta H = -296.8 \text{ kJ/mol} \rightarrow \times 2$
 $C(s) + 2S(s) ---> CS_2(\ell) \Delta H = +87.9 \text{ kJ/mol} \rightarrow \leftarrow \ell$

21)Given the following data:

$$D+Total = (234) + (592) + (-1220)$$

$$= -394K5$$